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Abstract

New SARS-CoV-2 variants with mutations in the spike glycoprotein have arisen inde-
pendently at multiple locations and may have functional significance. The combination
of mutations in the 501Y.V2 variant first detected in South Africa include the N501Y,
K417N, and E484K mutations in the receptor binding domain (RBD) as well as muta-
tions in the N-terminal domain (NTD). Here we address whether the 501Y.V2 variant
could escape the neutralizing antibody response elicited by natural infection with ear-
lier variants. We were the first to outgrow two variants of 501Y.V2 from South Africa,
designated 501Y.V2.HV001 and 501Y.V2.HVdF002. We examined the neutralizing ef-
fect of convalescent plasma collected from six adults hospitalized with COVID-19 using
a microneutralization assay with live (authentic) virus. Whole genome sequencing of the
infecting virus of the plasma donors confirmed the absence of the spike mutations which
characterize 501Y.V2. We infected with 501Y.V2.HV001 and 501Y.V2.HVdF002 and com-
pared plasma neutralization to first wave virus which contained the D614G mutation but
no RBD or NTD mutations. We observed that neutralization of the 501Y.V2 variants was
strongly attenuated, with IC59 6 to 200-fold higher relative to first wave virus. The de-
gree of attenuation varied between participants and included a knockout of neutralization
activity. This observation indicates that 501Y.V2 may escape the neutralizing antibody
response elicited by prior natural infection. It raises a concern of potential reduced pro-
tection against re-infection and by vaccines designed to target the spike protein of earlier
SARS-CoV-2 variants.

Through genomic surveillance of the severe acute respiratory syndrome-related coronavirus 2 (SARS-
CoV-2), a number of new variants have recently been identified with multiple mutations in the spike
glycoprotein [1, 2, 3]. We recently described the emergence of the N501Y.V2 variant in South Africa,
characterised by the K417N, E484K, and N501Y mutations in the spike receptor binding domain (RBD)
as well as four substitutions and a deletion in the N-terminal domain (NTD) [1]. This variant was first
detected in October 2020, and has rapidly become the dominant variant in several parts of the country
at a time of a rapid resurgence in infections.

The RBD is the main target of neutralizing antibodies (NAbs) elicited by SARS-CoV-2 infection,
with the remaining activity directed at the NTD [4, 5, 6]. All three amino acid residues in the RBD that
carry mutations in 501Y.V2 interact directly with the human angiotensin-converting enzyme 2 (hACE2)
receptor and form part of the epitopes for hACE2-blocking NAbs [7]. The E484 residue specifically is a
hotspot for binding of highly potent NAbs [7]. In a number of separate in vitro studies using monoclonal
antibodies (mAbs), mutations at E484 have emerged as immune escape mutations, often conferring broad
cross-resistance to panels of mAbs [8, 9, 10, 11]. E484K also emerged during passage with convalescent
plasma, leading to substantial drops in neutralization with convalescent plasma samples [12, 13]. Using
a deep mutation scanning approach to determine the effect of individual mutations on neutralization by
polyclonal serum, mutations at E484 were associated with the largest drops in neutralization [14].

Here, using a microneutralization assay with authentic virus, we address the question of whether
501Y.V2 variants can escape the neutralizing response elicited by natural infection with previous vari-
ants. We outgrew and compared the neutralization of two SARS-CoV-2 501Y.V2 variants to a previously
circulating variant derived from South Africa which does not have the 501Y.V2 defining mutations.

For neutralization, we used plasma samples from our ongoing longitudinal cohort study that tracks
COVID-19 cases enrolled at two hospitals in Durban, South Africa [15]. We sampled participants
weekly for the first month post-enrollment, and at each timepoint a blood draw and combined nasopha-
ryngeal/oropharyngeal swab was performed to obtain both the plasma and the infecting virus.
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Figure 1: Study design and sequences of SARS-CoV-2 variants. (A) We obtained convalescent plasma
and detected the matching infecting variant in the first SARS-CoV-2 infection wave in South Africa. A blood
draw and nasopharyngeal/oropharyngeal was performed on study participants. First wave virus was outgrown
from one of the participants and compared to two viruses outgrown from the second wave, which were 501Y.V2
variants. A focus forming microneutralization assay was used to quantify neutralization. (B) Phylogenetic tree
and mutations of variant sequences. Variants which infected the study participants who were plasma donors only
for this study are marked in blue. Sequences of variants which were outgrown are marked in yellow. Participant
039-13-0013 was both a plasma donor and the donor from whom the first wave virus was outgrown. Y-axis
denotes time of sampling for viral sequencing. Table shows mutations present in Spike for the 501Y.V2 variants
and the first wave virus used in the study. See Table S2 for a complete list of mutations in the viral genomes.

We chose plasma from participants from the first infection wave where the infecting virus was suc-
cessfully sequenced (Table S1) and where RBD binding was detected by ELISA. These viruses were
from a variety of B.1 lineages circulating in South Africa and contained the D614G mutation but none
of the spike mutations defining 501Y.V2 (Figure 1, see Table S2 for whole genome mutations). Plasma
samples were from blood drawn approximately 1 month post-symptom onset (Table S1), shown to be
close to the antibody response peak [16, 17].

We outgrew first wave virus (Materials and methods) from a sample obtained from a cohort par-
ticipant (039-13-0013) in July 2020, and second wave 501Y.V2 virus from two samples obtained in
November 2020 through our genomic surveillance program. We used a microneutralization live virus
focus forming assay (FFA) [18]. This relies on a methylcellulose overlay to limit cell-free viral spread,
resulting in a local infection focus then detected by an anti-SARS-CoV-2 Spike antibody (Materials and
methods). Re-sequencing of the first 501Y.V2 variant after outgrowth revealed no changes in the RBD
or NTD but a deletion in the furin cleavage site (Table S3) commonly observed after in witro culture
in Vero E6 cells [19, 20]. We designated this variant 501Y.V2.HVAF002. HV represents the outgrowth
protocol which included initial outgrowth in a human H1299 cell line derivative overexpressing the ACE2
receptor, followed by a cell-to-cell infection of Vero E6 cells (Materials and methods). dF represents
the deletion of the furin cleavage site. Deletion of the furin cleavage site may not affect neutralization
[19]. However, we proceeded to test an additional 501Y.V2 variant. This variant, which we designated
501Y.V2.HV001, had an additional mutation, L18F, in the NTD prior to outgrowth and showed no
changes in spike sequence after outgrowth.

We mixed the virus with serially diluted participant plasma, then added the mixture to Vero E6
cells and counted infection foci after 28 hours (Figure 2A, Materials and methods). There was a clear
visual difference in the number of foci as a function of plasma dilution. 501Y.V2.HV001 also showed
dramatically larger foci (Figure 2A).

We normalized the number of foci to the number of foci in the absence of plasma on the same plate
to obtain the transmission index (Tx, [21]). In this context, it is the number of foci in the presence of
plasma inhibition divided by the number of foci in the absence of plasma. This controls for experiment
variability between plates and experiments. The data from the FFA approximated a normal distribution
(Figure S1) and we therefore used parametric statistics to describe it. We observed neutralization of the
first wave virus which varied between plasma samples (Figure 2B). To obtain the IC5g, we fitted the data
for each participant to a sigmoidal function [22] with IC5q as the only free parameter (Materials and
methods). Fitted ICsg values (Figure 2D) varied between 4 x 10~ for participant 039-13-0013 to 1 x10~*
for participants 039-13-0033 and 039-02-0015, consistent with the previously observed heterogeneity in
neutralization between individuals [16, 17].

We next determined neutralization of 501Y.V2. A decline in plasma neutralization was clearly ob-
served (Figure 2A). T501Y.V2.HV001 also showed attenuated neutralization likely greater than that
of 501Y.V2.HVdF002 (Figure S2), ruling out the in vitro generated deletion in the furin cleavage site
as being responsible for escape. We combined the data for both 501Y.V2 variants. Fitted IC5q values
varied between 1 x 1073 (1:100 dilution) for plasma from participant 039-13-0033 to a complete knock-
out of activity for plasma from participant 039-13-0013 (Figure 2D). The 501Y.V2 to first wave ICjqg
ratio ranged from 6 to 200-fold (Figure 2D). Averaging across all participants highlighted the dramatic
decrease in sensitivity to neutralization of authentic 501Y.V2 variants (Figure 2E).
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Figure 2: Neutralization of first wave and 501Y.V2 variants by convalescent plasma from first
wave infections. (A) A representative focus forming assay using plasma from participant 039-13-0015. Plasma
neutralization of (B) first wave virus and (C) the combined results from the two 501Y.V2 variants. Colored
circles represent means and standard errors from 8 independent neutralization experiments using plasma from
6 convalescent participants who were infected by first wave variants in the first peak of the pandemic in South
Africa. Correspondingly colored lines are fits of the sigmoidal equation with ICs as the fitted parameter. Black
points represent a pool of plasma from three uninfected controls. The transmission index (Tx) is the number
of foci in the presence of the plasma dilution normalized by the number of foci in the absence of plasma. (D)
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As we have entered the second year of the SARS-CoV-2 pandemic with high levels of transmission in
many parts of the world, variants with mutations at key residues in the spike glycoprotein have emerged.
Here we present clear evidence using authentic SARS-CoV-2 that the 501Y.V2 variant first detected
in South Africa is associated with reduced neutralization by plasma collected from patients infected
in the first wave with SARS-CoV-2 variants without the 501Y.V2 defining RBD and NTD mutations.
While our findings are based on plasma samples from six convalescent study participants, the relative
consistency of the effect argues that the potential to escape neutralizing antibodies elicited by prior
SARS-CoV-2 infection may be widespread.

The reduced neutralization is most likely related to the mutations in the spike RBD and NTD that
characterize the 501Y.V2 variant. While the E484K mutation has the clearest association with immune
escape, the other mutations in the RBD (K417N, N501Y) are also located within residues targeted
by some class 1 and class 2 NAbs [7]. Information about the significance of NTD mutations is also
emerging. NAbs targeting this site have been shown to be potent neutralizers of SARS-CoV-2 [5, 6].
The deletion at residues 242-244 is just outside an antigenic supersite loop (residues 245-264) and L18
also falls within the antigenic supersite. Furthermore, mutations at L18 and D80 have been selected
during passage with mAbs [5]. Our second variant contains the L18F mutation. This may be associated
with the trend to lower neutralization sensitivity relative to the first 501Y.V2 variant (Figure S2). This
variant also has strikingly larger foci (Figure 2A).

The reasons for the rapid emergence and fixation of potential immune escape mutations in South
Africa remain unclear. The 501Y.V2 variant was first detected in the Eastern Cape Province of South
Africa, in Nelson Mandela Bay, an urban municipality with a population of just over one million.
While we have no SARS-CoV-2 seroprevalence data from this area, there were 1909 excess natural
deaths (approximately 1600 per million population) by the end of the first wave in mid-September (
https://www.samrc.ac.za/reports/report-weekly-deaths-south-africa). In the context of a young popu-
lation (over 80 percent of the population under 50 years), this data would suggest a high attack rate
from the first wave. While circumstantial, this provides some support to a hypothesis of high levels of
population immunity driving the selection of variants with capacity to evade natural immunity. This
area also has high HIV prevalence, and has amongst the lowest proportions of people with HIV who have
viral suppression (http://www.hivdata.org.za/). We have not observed evidence of chronic SARS-CoV-2
infection in people living with HIV in our longitudinal cohort [15]. However, most cohort participants
had sustained virological suppression with antiretroviral therapy (ART). We did observe altered im-
mune dynamics after SARS-CoV-2 infection in HIV viremic participants relative to those who were
virologically suppressed, and we are currently enrolling additional participants to examine SARS-CoV-2
clearance in the HIV viremic subset.

The implications of these results for re-infection and vaccine efficacy are still unclear. Our findings
emphasize the need to understand whether the 501Y.V2 variant, and other similar variants, are associ-
ated with an increased rate of re-infection. Vaccines such as the Oxford/Astra Zeneca ChAdOx1 [23]
and the Pfizer-BioNTech BNT162b2 [24] elicit neutralization titers in a similar range to the convalescent
plasma in this study. However, these vaccines may elicit a broader antibody response and protective T
cell immunity [25]. Protective T cell immunity also likely occurs following natural infection. Further-
more, it is unclear what degree of neutralization mediates protection, and infection may be particularly
sensitive to inhibition at exposure [26].

In conclusion, we present data suggesting that the 501Y.V2 variant first detected in South Africa
is able to escape the neutralizing antibody response elicited by natural infection with earlier variants.
We expect data in the next weeks from phase 3 vaccine trials being conducted in South Africa. If the
variant does have an effect on vaccine efficacy, then there may be a signal in the data from these clinical
trials.
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Material and methods

Ethical statement

Nasopharyngeal /oropharyngeal swab samples and plasma samples were obtained from six hospital-
ized adults with PCR-confirmed SARS-CoV-2 infection enrolled in a prospective cohort study ap-
proved by the Biomedical Research Ethics Committee (BREC) at the University of KwaZulu-Natal
(reference BREC/00001275/2020). The 501Y.V2 variants were obtained from residual nasopharyn-
geal/oropharyngeal samples used for routine SARS-CoV-2 diagnostic testing by the National Health
Laboratory Service, through our SARS-CoV-2 genomic surveillance program (BREC approval reference
BREC,/00001510,/2020).

Whole genome sequencing, genome assembly and phylogenetic analysis

c¢DNA synthesis was performed on the extracted RNA using random primers followed by gene specific
multiplex PCR using the ARTIC V3 protocol. Briefly, extracted RNA was converted to cDNA using the
Superscript IV First Strand synthesis system (Life Technologies, Carlsbad, CA) and random hexamer
primers. SARS-CoV-2 whole genome amplification was performed by multiplex PCR using primers de-
signed on Primal Scheme (http://primal.zibraproject.org/) to generate 400bp amplicons with an overlap
of 70bp that covers the 30Kb SARS-CoV-2 genome. PCR products were cleaned up using AmpureXP
purification beads (Beckman Coulter, High Wycombe, UK) and quantified using the Qubit dsDNA
High Sensitivity assay on the Qubit 4.0 instrument (Life Technologies Carlsbad, CA). We then used the
Mlumina®) Nextera Flex DNA Library Prep kit according to the manufacturer’s protocol to prepare
indexed paired end libraries of genomic DNA. Sequencing libraries were normalized to 4nM, pooled and
denatured with 0.2N sodium acetate. 12pM sample library was spiked with 1% PhiX (PhiX Control v3
adapter-ligated library used as a control). We sequenced libraries on a 500-cycle v2 MiSeq Reagent Kit
on the Illumina MiSeq instrument (Illumina, San Diego, CA). We have previously published full details
of the amplification and sequencing protocol [27].

We assembled paired-end fastq reads using Genome Detective 1.126 (https://www.genomedetective.com)

and the Coronavirus Typing Tool [28]. We polished the initial assembly obtained from Genome Detective
by aligning mapped reads to the references and filtering out low-quality mutations using bcftools 1.7-2
mpileup method. Mutations were confirmed visually with bam files using Geneious software (Biomatters
Ltd, Auckland, New Zealand). All of the sequences were deposited in GISAID (https://www.gisaid.org/).
We retrieved all South African SARS-CoV-2 genotypes from the GISAID database as of 11 January
2021 (N=2704). We initially analyzed South African genotypes against the global reference dataset
(N=2592) using a custom pipeline based on a local version of NextStrain. The pipeline contains several
python scripts that manage the analysis workflow. It performs alignment of genotypes in MAFFT [29],
phylogenetic tree inference in 1Q-Tree20, tree dating and ancestral state construction and annotation
(https://github.com /nextstrain/ncov).

Cells

Vero E6 cells (ATCC CRL-1586, obtained from Cellonex) were propagated in complete DMEM with 10%
fetal bovine serum (Hylone) containing 1% each of HEPES, sodium pyruvate, L-glutamine, and non-
essential amino acids (Sigma-Aldrich). Cells were passaged every 3-4 days. H1299 cells were propagated
in complete RPMI with 10% fetal bovine serum containing 1% each of HEPES, sodium pyruvate, L-
glutamine, and non-essential amino acids and and passaged every second day.

H1299-E3 cell line for first passage SARS-CoV-2 outgrowth

The H1299-H2AZ clone with nuclear labelled YFP [30] was constructed to overexpress ACE2 as follows:
VSVG-pseudotyped lentivirus containing the human ACE2 was generated by co-transfecting 293T cells
with the pHAGE2-EF1lalnt-ACE2-WT plasmid along with the lentiviral helper plasmids HDM-VSVG,
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HDM-Hgpm2, HDM-tat1lb and pRC-CMV-Rev1b using TransIT-LT1 (Mirus) transfection reagent. Su-
pernatant containing the lentivirus was harvested two days after infection, filtered through a 0.45um
filter (Corning) and used to spinfect H1299-H2AZ at 1000 rcf for 2 hours at room temperature in the pres-
ence of 5 ug/mL polybrene (Sigma-Aldrich). ACE-2 transduced H1299-H2AZ cells were then subcloned
at the single cell density in 96-well plates (Eppendorf) in conditioned media derived from confluent cells.
After 3 weeks, wells were trypsinized (Sigma-Aldrich) and plated in two replicate plates, where the first
plate was used to determine infectivity and the second was stock. The first plate was screened for the
fraction of mCherry positive cells per cell clone upon infection with SARS-CoV-2 mCherry expressing
Spike pseudotyped lentiviral vector 1610-pHAGE2/EF1a Int-mCherry3-W produced by transfecting as
above. Screening was performed using a Metamorph-controlled (Molecular Devices, Sunnyvale, CA)
Nikon TiE motorized microscope (Nikon Corporation, Tokyo, Japan) with a 20x, 0.75 NA phase ob-
jective, 561 laser line, and 607 nm emission filter (Semrock, Rochester, NY). Images were captured
using an 888 EMCCD camera (Andor). Temperature (37°C), humidity and CO2 (5%) were controlled
using an environmental chamber (OKO Labs, Naples, Italy). The clone with the highest fraction of
mCherry expression was expanded from the stock plate and denoted H1299-E3. This clone was used in
the outgrowth.

Viral Outgrowth

All live virus work was performed in Biosafety level 3 containment using AHRI Institutional Biosafety
Committee approved protocols for SARS-CoV-2. For first wave virus, a T25 flask (Corning) was seeded
with Vero E6 cells at 2 x 105 cells/ml and incubated for 18-20 hours. After 1 DPBS wash, the sub-
confluent cell monolayer was inoculated with 500pL universal transport medium (UTM) diluted 1:1
with growth medium and filtered through a 0.45uM filter. Cells were incubated for 1 hour. Flask was
then filled with 7mL of complete growth medium and checked daily for cytopathic effect (CPE). Four
days post infection, supernatants of the infected culture were collected, centrifuged at 300 rcf for 3
minutes to remove cell debris, and filtered using a 0.45uM filter. Viral supernatant was aliquoted and
stored at -80°C. For 501Y.V2 variants, we used H1299-ACE2-E3 cells for initial isolation followed by
passage into Vero E6 cells. H1299-ACE2-E3 cells were seeded at 1.5 x 10° cells/ml and incubated for
18-20 hours. After 1 DPBS wash, the sub-confluent cell monolayer was inoculated with 500uL universal
transport medium (UTM) diluted 1:1 with growth medium and filtered through a 0.45uM filter. Cells
were incubated for 1 hour. Wells were then filled with 3mL of complete growth medium. 8 days post-
infection, cells were trypsinized, centrifuged at 300 rcf for 3 minutes and resuspended in 4mL growth
medium. 1mL was added to Vero E6 cells that had been seeded at t 2 x 10° cells/ml 18-20 hours earlier
in a T25 flask (approximately 1:8 donor-to-target cell dilution ratio) for cell-to-cell infection. Coculture
of H1299-ACE2-E3 and Vero E6 cells was incubated for 1 hour and flask was then filled with 7mL of
complete growth medium and incubated for 6 days. Viral supernatant was aliquoted and stored at
-80°C or further passaged in Vero E6 cells as above.

Microneutralization using focus forming assay

Vero E6 cells were plated in an 96 well plate (Eppendorf) at 30,000 cells per well 1 day pre-infection.
Plasma was separated from EDTA-anticoagulated blood by centrifugation at 500 rcf for 10 minutes and
stored at -80°C. Aliquots of plasma samples were heat-inactivated at 56°C for 30 minutes, and clarified
by centrifugation at 10,000 rcf for 5 minutes, where the clear middle layer was used for experiments.
Inactivated plasma was stored in single use aliquots to prevent freeze-thaw cycles. For experiments,
plasma was serially diluted two-fold from 1:100 to 1:1600. Virus stocks were used at approximately 50
focus-forming units (FFU) per microwell and added to diluted plasma; antibody-virus mixtures were
incubated for 1 hour at 37°C, 5% CO2 . Cells were infected with 100uL of the virus-antibody mixtures,
to allow adsorption of virus. Subsequently, 100uL of a 1x RPMI 1640 (Sigma-Aldrich R6504), 1.5%
carboxymethylcellulose (Sigma-Aldrich C4888) overlay was added to the wells without removing the
inoculum. Cells were fixed at 28 hours post-infection using 4% paraformaldehyde (Sigma-Aldrich) for
20 minutes. For staining of foci, a rabbit anti-Spike monoclonal antibody (mAb BS-R2B12, GenScript
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A02058) was used at 0.5ug/mL as the primary detection antibody. Antibody was resuspended in
a permiabilization buffer containing 0.1% saponin (Sigma-Aldrich), 0.1% BSA (Sigma-Aldrich), and
0.05% tween (Sigma-Aldrich) in PBS. Plates were incubated with primary antibody overnight at 4°C,
then washed with wash buffer containing 0.05% tween in PBS. Secondary goat anti-rabbit horseradish
peroxidase (Abcam ab205718) was added at 1 pg/mL and incubated for 2 hours at room temperature
with shaking. The TrueBlue peroxidase substrate (SeraCare 5510-0030) was then added at 50uL per
well and incubated for 20 minutes at room temperature. Plates were then dried for 2 hours and imaged
using a Metamorph-controlled Nikon TiE motorized microscope with a 2x objective. Automated image
analysis was performed using a Matlab2019b (Mathworks) custom script, where focus detection was
automated and did not involve user curation. Image segmentation steps were stretching the image from
minimum to maximum intensity, local Laplacian filtering, image complementation, thresholding and
binarization. For the second 501Y.V2 variant, a dilation/erosion step was introduced to prevent the
large foci from fragmenting into smaller objects.

Statistics and fitting

All statistics and fitting were performed using Matlab2019b. Neutralization data was fit to

Tx =1/1+ (D/ICs).

Here Tx is the number of foci normalized to the number of foci in the absence of plasma on the same
plate at dilution D. Fit to a normal distribution using Matlab2019b function normplot, which compared

the distribution of the Tx data to the normal distribution (see https://www.mathworks.com/help/stats/normplot.html).
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Figure S 1: Fit of combined data for each plasma dilution to a normal distribution. The Matlab2019b
function normplot was used to assess the fit of the data (blue crosses) to a normal distribution (solid red line).
Lack of pronounced curvature of the data in the range of the solid line indicates that a the data is a reasonably
good fit to a normal distribution. see https://www.mathworks.com/help/stats/normplot.html for additional
information.
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Figure S 2: Neutralization of first wave and 501Y.V2 by convalescent plasma from first wave
infections separated by variant. Four sets of independent experiments were performed per 501Y.V2 - first
wave pair, where the matched first wave variant results are shown to the left of the 501Y.V2 neutralization
results. 501Y.V2 variant 2 contained the L18F mutation in addition to the mutations of variant 1 , and did

not have the furin cleavage site deletion from outgrowth in Vero E6 cells.

Colored points represent means

and standard errors from 4 independent experiments for each 501Y.V2 variant/first wave pair of neutralization
activity of plasma from 6 convalescent participants infected by first wave viruses. Corresponding lines are fits of
the sigmoidal equation with IC5 as the fitted parameter. Black points represent a pool of plasma from three
uninfected controls. The transmission index (Tx) is the number of foci in the presence of the plasma dilution
normalized by the number of foci in the absence of plasma.



Table S 1: Plasma donor characteristics

Supplemental Date of Days between Days between
Cohort ID Sex Age pp symptom symptom onset and symptom onset and
oxygen . . .
onset diagnostic swab plasma collection
039-02-0014 F 66 No 01-Jul-2020 13 27
039-02-0017 F 66 Yes 21-Jul-2020 7 28
039-13-0013 F 54 No 29-Jun-2020 3 30
039-13-0015 F 42 No 21-Jun-2020 12 26
039-13-0033 F 37 No 24-Jun-2020 23 30
039-13-0062 M 67 No 06-Aug-2020 12 26
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