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HIV molecular epidemiology studies analyse viral pol gene sequences due to their availability, but 
whole genome sequencing allows to use other genes. We aimed to determine what gene(s) provide(s) 
the best approximation to the real phylogeny by analysing a simulated epidemic (created as part of the 
PANGEA_HIV project) with a known transmission tree. We sub-sampled a simulated dataset of 4662 
sequences into different combinations of genes (gag-pol-env, gag-pol, gag, pol, env and partial pol) and 
sampling depths (100%, 60%, 20% and 5%), generating 100 replicates for each case. We built maximum-
likelihood trees for each combination using RAxML (GTR + Γ), and compared their topologies to the 
corresponding true tree’s using CompareTree. The accuracy of the trees was significantly proportional to 
the length of the sequences used, with the gag-pol-env datasets showing the best performance and gag 
and partial pol sequences showing the worst. The lowest sampling depths (20% and 5%) greatly reduced 
the accuracy of tree reconstruction and showed high variability among replicates, especially when using 
the shortest gene datasets. In conclusion, using longer sequences derived from nearly whole genomes 
will improve the reliability of phylogenetic reconstruction. With low sample coverage, results can be 
highly variable, particularly when based on short sequences.

Most studies on HIV molecular epidemiology now use the portion of the viral pol gene that contains the protease 
(PR) and reverse transcriptase (RT) coding regions. This is because these partial pol sequences (around 1.3 Kb 
long) are routinely sequenced for genotypic resistance testing1–3. Although initially the env gene was considered 
to present the strongest phylogenetic signal, it was argued that some env fragments were too short and/or variable 
for a robust analysis4. After pol was demonstrated to accurately reconstruct HIV transmission5, its analysis for 
phylogenetic studies became the standard owing to the very large datasets available for analysis (e.g., the UK6 
and Swiss7 sequence databases). In the last few years, the increasing availability of HIV whole genome sequences 
has made possible the analysis of other genetic regions, which has raised discussion about whether full-length 
genome trees should be used or which viral genes provide the best trees.

A few studies have previously approached this question by analysing HIV transmission networks in which the 
timing and direction of transmission were known8–11. They have suggested that the combination of more than 
one gene provides the best estimation of the true tree. However, all were limited to very few patients and, in some 
cases, short nucleotide sequences. The lack of a known, large phylogeny prevents providing a definitive compar-
ison that would answer this question, but simulated data provide an approximation that allows having both the 
true tree and a recombination-free dataset.

Such data were generated in the context of the PANGEA_HIV Methods Comparison Exercise12 (http://www.
pangea-hiv.org), for which an HIV epidemic in an African village was simulated using an agent-based model in 
which all sexual contacts were recorded, and those that gave rise to transmissions created a transmission tree 
which was recorded. Here, we used these HIV datasets to evaluate the effect of utilising viral sequence datasets 
of different length and from several viral genes and with different sampling depths to reconstruct the known 
simulated phylogenies.
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Results
From the simulated HIV sequence data generated for the PANGEA_HIV project, we produced different com-
binations of sampling density (100%, 60%, 20% and 5%) and viral gene use (gag-pol-env, gag-pol, gag, pol, env 
and partial pol). Sixty per cent represents approximately the sampling coverage in the UK HIV Drug Resistance 
Database13, whereas 5% represent the range in HIV sequence coverage that is believed to be relevant for cohorts 
in many African countries. For example, in the region of KwaZulu-Natal, South Africa, the sampling density 
is estimated to be between 4% and 8%, according to the specific cohort, (Prof. Tulio de Oliveira, pers. comm.). 
This sub-sampling was randomly replicated 100 times and ML trees were constructed, whose topology was then 
compared to that of the corresponding true tree. The results of the CompareTree metric (Fig. 1A) show that the 
proportion of correct tree splits increased with the length of the sequences used. The genome datasets showed the 
best performance considering all the sampling coverage levels together (Table 1), with an average metric value 
of 0.965 (95% confidence interval (CI) =  0.964–0.966). It was closely followed by gag-pol (0.951 [0.950–0.952]), 
pol (0.934 [0.933–0.935]) and env (0.932 [0.930–0.933]) in that order. The smaller gag (0.879 [0.877–0.880]) and 
partial pol (0.867 [0.866–0.869]) sequences showed the worst performances.

Thus, the proportion of correct tree splits increased in direct proportion to the length of the sequences used. 
A linear regression analysis showed a statistically significant positive correlation between the metric and a log-
arithmic transformation of the sequence length, yielding a correlation value of R2 =  0.83 (p <  10−16; see also 
Fig. 1B for the complete formula). This was also true when analysing the sampling coverage levels individu-
ally (R2 >  0.78 and p <  0.01 for all levels; see also Supplementary Figure 1). However, when considering spe-
cific genes, the analysis of the env gene (length =  2508 bp) was more accurate than that of pol (length =  3000 bp) 
when reconstructing the true tree in the 100% (point estimation= 0.947 versus 0.936), 60% (mean or the repli-
cates =  0.946 [95%CI =  0.945–0.945] versus 0.935 [0.934–0.935]; Student’s t-test p <  10−16) and 20% (mean of the 
replicates =  0.935 [95%CI =  0.934–0.936] versus 0.933 [0.931–0.934]; p =  0.01) sampling levels, but it showed 
more variability and worse results than the pol analyses in the replicates with 5% sampling level: mean =  0.915 
(95%CI =  0.912–0.918) in env versus mean =  0.936 (95%CI =  0.933–0.938) in pol (p <  10−16). In general, env was 
the gene that showed the largest difference in the mean estimations across the different sampling coverage levels.

In the subsampled datasets, the 60% sampling coverage dataset performed very similarly to the fully sampled 
dataset, even showing means significantly higher than the 100% sampling coverage estimates when analysing 
the gag-pol-env (0.971 [95%CI =  0.970–0.971] versus 0.967; p <  10−16), gag (0.880 [0.879–0.881] versus 0.879; 
p =  6.5 ×  10−3) and partial pol datasets (0.870 [0.869–0.871] versus 0.868; p =  1.6 ×  10−4).

Figure 1. (A) Proportion of the maximum likelihood trees splits shared with the true tree for each gene and 
sampling coverage level. Genes are sorted according to length. The top and bottom limits of the boxes represent, 
respectively, the first and third quartiles (the distance between them represents the inter-quartile range, IQR). The 
lines (whiskers) include the highest and lowest values that lie within the 1.5 ×  IQR distance from the first and third 
quartiles, respectively. Data points outside this range are outliers. (B) Proportion of the maximum likelihood trees 
splits shared with the true tree according to gene length. All sampling coverage levels were considered together (see 
Supplementary Figure 1 for an analysis broken down by sampling coverage level). The regression line is shown in 
blue, for which the formula, the correlation coefficient (R2) and the p-value are presented. The shaded area shows 
the regression line’s confidence intervals. The grey, dotted vertical lines show the length of each gene considered.
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In the 20% sampling level there was considerable overlap in performance among the larger fragments, but that 
of the smaller regions was substantially poorer. With 5% sampling coverage levels, the results showed the largest 
confidence intervals, revealing a substantial variability among the replicates, although some of these replicates 
outperformed estimations from the levels with higher sampling coverage.

Although quantitatively small, these differences in accuracy of tree reconstruction are important for iden-
tifying transmission clusters. We tested the impact of these differences using a standard methodology to detect 
transmission networks from the trees generated in this study by comparing the proportion of clusters found in 
the true tree (“true clusters”) that were also found when analysing the ML trees. We did this using the gag-pol-env 
sequence and the partial pol sequences (as is the norm in the vast majority of studies) in the 100% sampled 
dataset, and we discovered that the use of gag-pol-env detected a significantly higher proportion of true clusters 
(778 out of 788 true clusters in gag-pol-env (98.73%) versus 774 out of 827 true clusters in partial pol (93.59%), 
chi-square test p =  1.95 ×  10−7). Thus, even in the fully sampled dataset, the reconstruction of trees from partial 
sequences implies a significant and important difference in the outcome.

Discussion
We have used simulated HIV sequence data to show how the use of genes of different lengths can affect the correct 
reconstruction of the true viral phylogeny. The proportion of correct trees increased in almost direct proportion 
to the length of the sequences used. Thus, the 7 Kb gag-pol-env nearly full-genome sequences were best at recon-
structing the true tree.

The 60% sampling coverage provides the most similar results to the analyses of the complete datasets, which 
emphasises the superior reliability of studies based on high densely sampled epidemics. In contrast, lower sam-
pling depths (20% and 5%, which resemble the sampling settings found in Africa and developing areas) greatly 
reduced the accuracy of tree reconstruction –visible in the high variability between the replicates– especially 
when using the short clinical pol dataset.

We presumably obtained values higher than expected in a real-world analysis, particularly because there is a 
complete fit between the evolutionary model used to simulate the sequence data and the model used for analysing 
it. In addition, the good performance of the env analyses is partly due to the fact that its characteristic insertion/
deletion variation was not simulated. Nevertheless the fact that env trees can outperform the pol trees, suggests 
that, in principle, the higher evolutionary rate in env can improve reconstruction.

Here we used a metric that is proportional to the RF metric –the most widely used method to estimate the 
distance/similarity between two phylogenetic trees. While this might be a simplistic metric, it is an intuitive and 
powerful method to compare trees, although its limitation is that it does not provide a means to state that one tree 
is significantly more similar to the true tree than a second tree is.

Our results demonstrate that the length of the sequence increases the reliability of phylogeny reconstruction in 
simulated data. In the simulations, different evolutionary rates applied to the gag-pol and env genes, as seen in real 
datasets. These were of 1.91 ×  10−3 for gag-pol (or pol) and 3.83 ×  10−3 for env, i.e. the evolutionary rate for env 
was twice that of gag-pol. Thus, the amount of variation that we find in env (length =  2508 nt) would be equivalent 
to an approximately 5 Kb-long gag-pol sequence. This could explain that, in some replicates, env outperforms pol 
(length =  3000 nt). However, there was no insertion/deletion variation in the simulated sequences and in analys-
ing real datasets this apparent superiority of env over more conserved genes is constrained by errors in alignment 
if hypervariable regions are included.

Although we did not perform a bootstrapping analysis of the reconstructed trees, previous analyses have further 
demonstrated that support for groupings in the tree is increased when longer sequences are used, and clustering found 
in full-length datasets can be missed when using sub-genomic regions14–16. Given the difficulty in generating and/or 
handling full genome datasets, our results demonstrate that gag-pol provides a dependable approximation; however it 
should be kept in mind that, at this point and considering we analysed a simulated dataset, the good performance of 
gag-pol could be more attributable to these genes’ combined length than to their particular characteristics.

In conclusion, thanks to the more affordable generation of full HIV genomes, as is the goal of the PANGEA_
HIV consortium17, the use of longer genetic regions (such as concatenated gag, pol and env or gag-pol) will allow 
for a more reliable reconstruction of transmission events. The traditional short pol sequences generated for resist-
ance testing that are used in most molecular epidemiology studies are substantially less reliable, especially with 
low sampling depths. An effort to generate highly sampled datasets is also needed to increase our ability to recon-
struct real HIV epidemics.

Gene
Length 

(bp)

Sampling coverage level (mean [95% confidence interval])

All 100% 60% 20% 5%

gag-pol-env 6987 0.965 (0.964–0.966) 0.967 0.971 (0.970–0.971) 0.965 (0.964–0.966) 0.959 (0.957–0.961)

gag-pol 4479 0.951 (0.950–0.952) 0.954 0.953 (0.953–0.954) 0.950 (0.948–0.951) 0.950 (0.948–0.953)

pol 3000 0.934 (0.933–0.935) 0.936 0.935 (0.934–0.935) 0.933 (0.931–0.934) 0.936 (0.933–0.938)

env 2508 0.932 (0.930–0.934) 0.947 0.946 (0.945–0.946) 0.935 (0.934–0.936) 0.915 (0.912–0.918)

gag 1479 0.879 (0.877–0.880) 0.879 0.880 (0.879–0.881) 0.880 (0.878–0.881) 0.877 (0.873–0.880)

Partial pol 1302 0.867 (0.866–0.869) 0.868 0.870 (0.869–0.871) 0.875 (0.873–0.877) 0.857 (0.853–0.861)

Table 1.  Proportion of the maximum likelihood trees splits shared with the true tree according to gene and 
sampling coverage level. The table shows the mean value and its 95% confidence intervals for the 100 replicates 
performed in each case. Note that for the full dataset (100% sampling coverage) only one estimation is shown 
because no replicates can be performed. The genes are ordered in descending order of sequence length.
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Methods
HIV epidemic simulation. The PANGEA_HIV phylodynamic Methods Comparison Exercise12 (http://
www.pangea-hiv.org/Projects#phylodynamic) created a simulation resembling an African Village, which was 
based on high- and low-risk households and a small sex worker group. These simulations made use of the Discrete 
Spatial Phylo Simulator adapted to HIV-specific components (DSPS-HIV), which is an individual-based sto-
chastic simulator. Using a specifiable contact network, the DSPS-HIV models HIV transmissions and records 
all sexual contacts. Selecting those which gave rise to transmissions produced the transmission tree. To generate 
the HIV sequences associated to these transmissions events, viral phylogenies that reflect between- and with-
in-host viral evolution were simulated down the transmission tree using VirusTreeSimulator (https://github.com/
PangeaHIV/VirusTreeSimulator).

In order to reconstruct ancestral subtype C sequences to be used as starting point of the simulation, a data-
set of Southern African full genome subtype C sequences was downloaded from Los Alamos database (http://
www.hiv.lanl.gov/). It included 100 sequences selected to represent a balanced number of sequences per cal-
endar year (1989–2011), and were sampled in South Africa (n =  46), Botswana (n =  41), Zambia (n =  8) and 
Malawi (n =  5). The GenBank accession numbers corresponding for these 100 sequences are provided in the 
Supplementary Table 1. This dataset was separated into gag, pol and env and ancestral sequences for each gene 
were reconstructed using BEAST v1.8.118 applying GTR +  4Γ  +  I as nucleotide substitution model and Bayesian 
skyride as demographic model.

These ancestral sequences were used as starting point to simulate sequences along these viral phylogenies 
using π BUSS19, with substitution rates parameterized from the aforementioned analyses of Southern African 
sequences. To increase realism, different substitution rates applied to different genes (with a rate twice as high 
for env as for gag and pol) and different codon positions (1st and 2nd vs 3rd). Finally, the simulations were 
parameterized to emulate prevalence and incidence estimates from the peak of the African HIV epidemic in the 
late 1980s-early 1990s20–22, before treatment roll-out, so the date of the root of the sequences coincides with the 
subtype C common ancestor in the 1940s23.

More specific information about the sequence simulation is provided in the following PANGEA_HIV doc-
ument: https://www.dropbox.com/sh/zlv40u4vnmpvy71/AAC8-yTPJA74OcYzvTCTb-H2a/201502/Village_
unblinded/DSPS-Feb15Release-Details.pdf?dl= 0.

Analysis dataset. We sampled all HIV simulated sequences corresponding to all infected individuals (one 
sequence per individual) in a 5-year period –between years 40 and 45 after the simulated epidemic started. From 
these simulated HIV sequences we created different combinations of sequence sampling depths and genomic 
regions. The full dataset contained 4662 sequences, and we adopted sub-sampling levels of 60% 20% and 5% sam-
pling density which therefore included, respectively, 2798, 933 and 233 sequences. These sequences were chosen 
at random from the dataset with 100% sampling coverage. For the 60%, 20% and 5% sampling coverage levels we 
generated 100 independent sub-samples to test the reproducibility of the analyses.

We split each of these sequence datasets into: (1) “genome” (which represented the concatenation of gag, pol 
and env (6987 bp)), (2) gag-pol (4479 bp), (3) gag (1479 bp), (4) complete pol (3000 bp), (5) env (2508 bp), and (6) 
partial pol (1302 bp, the region commonly generated for PR +  RT resistance testing).

The fully-sampled simulated sequence dataset as well as the true transmission tree are available at http://hiv.
bio.ed.ac.uk/datasets/Yebra2016_Tree_Comparison_dataset.zip.

Phylogenetic tree comparison. We obtained the top-scoring maximum likelihood (ML) tree for each of 
these datasets using RAxML v8.224 under the GTR +  Γ  substitution model. For the nearly full genome trees, we 
applied a partition analysis in RAxML to accommodate for different evolutionary models in gag-pol versus env.

The Robinson-Foulds (RF)25 metric is the most widely used measure of phylogenetic tree similarity. Given 
two phylogenetic trees, this metric counts the number of splits or clades induced by one of the trees but not the 
other. Here, we use an approximation to the RF metric implemented in the CompareTree program (http://meta.
microbesonline.org/fasttree/treecmp.html), which also calculates the fraction of splits in the query tree (i.e., the 
reconstructed trees) that are shared with the reference one (i.e., the true trees). Unlike the RF metric, this value 
represents a proportion (therefore it ranges from 0 to 1), providing a metric that is more intuitive and easier to 
interpret and compare. We use the proportion of shared splits as an indicator of the fidelity in reconstructing the 
corresponding, sub-sampled true tree.

Finally, in order to evaluate the implications of the topology differences, a phylogenetic cluster comparison 
analysis was performed in the fully sampled dataset using the Cluster Picker and Cluster Matcher programs26.

Statistical analyses. We compared the results from different genes and/or sampling coverage levels by using 
a two-sample Student’s t-test. When comparing to the fully sampled datasets (100% sampling coverage), for which 
only point estimations were obtained because replicates cannot be produced, a one-sample t-test was performed 
to test whether the corresponding mean distribution was significantly different than the point estimation of the 
100% sampling coverage level. Finally, we applied a linear regression analysis to explore the relationship between 
the results and the sequence length. All this calculations were produced in R27 version 3.1.2.
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