Title: Effects of genetic variability on rifampicin and isoniazid pharmacokinetics in South African patients with recurrent tuberculosis
Authors: Naidoo A, Chirehwa M, Ramsuran V, McIlleron H, Naidoo K, Yende-Zuma N, Singh R, Ncgapu S, Adamson J, Govender K, Denti P, Padayatchi N.
Journal: Pharmacogenomics, doi: 10.2217/pgs-2018-0166: (2019)


AIM: We report the prevalence and effect of genetic variability on pharmacokinetic parameters of isoniazid and rifampicin.


Genotypes for SLCO1B1, NAT2, PXR, ABCB1 and UGT1A genes were determined using a TaqMan® Genotyping OpenArray™. Nonlinear mixed-effects models were used to describe drug pharmacokinetics.


Among 172 patients, 18, 43 and 34% were classified as rapid, intermediate and slow NAT2 acetylators, respectively. Of the 58 patients contributing drug concentrations, rapid and intermediate acetylators had 2.3- and 1.6-times faster isoniazid clearance than slow acetylators. No association was observed between rifampicin pharmacokinetics and SLCO1B1, ABCB1, UGT1A or PXR genotypes.


Clinical relevance of the effects of genetic variation on isoniazid concentrations and low first-line tuberculosis drug exposures observed require further investigation.

KRISP has been created by the coordinated effort of the University of KwaZulu-Natal (UKZN), the Technology Innovation Agency (TIA) and the South African Medical Research Countil (SAMRC).

Location: K-RITH Tower Building
Nelson R Mandela School of Medicine, UKZN
719 Umbilo Road, Durban, South Africa.
Director: Prof. Tulio de Oliveira