Publication

Title: Reduced efficacy of HIV-1 integrase inhibitors in patients with drug resistance mutations in reverse transcriptase
Authors: Siedner MJ, Moorhouse MA, Simmons B, de Oliveira T, Lessells R, Giandhari J, Kemp SA, Chimukangara B, Akpomiemie G, Serenata Cm, Venter WDF, HillA, Gupta RK.
Journal: Nature Communications,https://doi.org/10.1038/s41467-020-19801-x: (2020)

Abstract

Little is known about the impact of pretreatment drug resistance (PDR) on the efficacy of second generation integrase inhibitors. We sequenced pretreatment plasma specimens from the ADVANCE trial (NCT03122262). Our primary outcome was 96-week virologic success, defined as a sustained viral load <1000 copies/mL from 12 weeks onwards, <200 copies/mL from 24 weeks onwards, and <50 copies/mL after 48 weeks. Here we report how this outcome was impacted by PDR, defined by the World Health Organization (WHO) mutation list. Of 1053 trial participants, 874 (83%) have successful sequencing, including 289 (33%) randomized to EFV-based therapy and 585 (67%) randomized to DTG-based therapy. Fourteen percent (122/874) have ?1 WHO-defined mutation, of which 98% (120/122) are NNRTI mutations. Rates of virologic suppression are lower in the total cohort among those with PDR 65% (73/112) compared to those without PDR (85% [605/713], P < 0.001), and for those on EFV-based treatment (60% [12/20] vs 86% [214/248], P = 0.002) and for those on DTG-based treatment (61/92 [66%] vs 84% [391/465] P < 0.001, P for interaction by regimen 0.49). Results are similar in multivariable models adjusted for clinical characteristics and adherence. NNRTI resistance prior to treatment is associated with long-term failure of integrase inhibitor-containing first-line regimens, and portends high rates of first-line failure in sub Saharan Africa.

Download: Full text paper

Citation: Siedner MJ, Moorhouse MA, Simmons B, de Oliveira T, Lessells R, Giandhari J, Kemp SA, Chimukangara B, Akpomiemie G, Serenata Cm, Venter WDF, HillA, Gupta RK. Reduced efficacy of HIV-1 integrase inhibitors in patients with drug resistance mutations in reverse transcriptase Nature Communications,https://doi.org/10.1038/s41467-020-19801-x: (2020).

Media Coverage of this Publication:


KRISP produces over 1000 HIV-1 genomes in record time - SAMRC Press Release - 2020-12-03

Durban, 3 December 2020. The KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), University of KwaZulu-Natal has produced over 1000 HIV-1 genomes in record time in South Africa, a significant scientific endeavor to understand how drug resistance has developed to a new and potent antiretroviral (ARV) treatment.



KRISP has been created by the coordinated effort of the University of KwaZulu-Natal (UKZN), the Technology Innovation Agency (TIA) and the South African Medical Research Countil (SAMRC).


Location: K-RITH Tower Building
Nelson R Mandela School of Medicine, UKZN
719 Umbilo Road, Durban, South Africa.
Director: Prof. Tulio de Oliveira